On Galerkin difference methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Difference and Discontinuous Galerkin Methods for Wave Equations

Wang, S. 2017. Finite Difference and Discontinuous Galerkin Methods for Wave Equations. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1522. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9927-3. Wave propagation problems can be modeled by partial differential equations. In this thesis, we study wave propagation in fluids and...

متن کامل

On Discontinuous Galerkin Multiscale Methods

In this thesis a new multiscale method, the discontinuous Galerkin multiscale method, is proposed. The method uses localized fine scale computations to correct a global coarse scale equation and thereby takes the fine scale features into account. We show a priori error bounds for convection dominated convection-diffusion-reaction problems with variable coefficients. We present an posteriori err...

متن کامل

Discontinuous Galerkin Time Domain Methods for Acoustics and Comparison with Finite Difference Time Domain Methods

This thesis describes an implementation of the discontinuous Galerkin finite element time domain (DGTD) method on unstructured meshes to solve acoustic wave equations in discontinuous media. In oil industry people use finite difference time domain (FDTD) methods to compute solutions of time domain wave equations and simulate seismic surveys, the first step to explore oil and gas in the earth’s ...

متن کامل

Nodal discontinuous Galerkin methods on graphics processors

Discontinuous Galerkin (DG) methods for the numerical solution of partial differential equations have enjoyed considerable success because they are both flexible and robust: They allow arbitrary unstructured geometries and easy control of accuracy without compromising simulation stability. Lately, another property of DG has been growing in importance: The majority of a DG operator is applied in...

متن کامل

On multiscale methods in Petrov-Galerkin formulation

In this work we investigate the advantages of multiscale methods in Petrov-Galerkin (PG) formulation in a general framework. The framework is subject to a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space and a high dimensional remainder space with negligible fine scale information. As a model problem we consider the Poisson problem....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2016

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2016.02.042